

Enhancing and Supporting GridFTP: An Essential Component of DOE High-speed Networking

Steve Tuecke

Deputy Director, Computation Institute
Argonne National Laboratory and University of Chicago

Project Overview

- Project title:
 - Enhancing and Supporting GridFTP: An Essential Component of DOE High-speed Networking
- PI: Steve Tuecke
- Project start: October 2011
- Duration: 3 years
- Objectives:
 - Enhancements to GridFTP protocol & Globus GridFTP
 - Support Globus GridFTP for DOE community

- Standard workhorse for large data movement in distributed science projects across DOE and worldwide
- GridFTP protocol extends FTP for:
 - High-performance
 - Strong security
 - Reliability
- Globus GridFTP server
 - Mature, widely used implementation of GridFTP

Globus GridFTP Usage

- >5,000 Globus GridFTP servers installed
- >½ PB per day transferred
- Used by ESnet, NERSC, LCFs, APS, OSG, Globus Online, XSEDE, EGI, ...

DOE use cases driving GridFTP

Globus Online driving GridFTP transfers

- NERSC: Recommended method for transferring files to/from GPFS file systems and HPSS
- ALCF: User remote file transfer to/from GPFS
- Advanced Photon Source: Distributed instrument data to users worldwide
- ESnet DTNs
- Etc.
- Science communities with custom clients
 - E.g. HEP, ESG

What is Globus Online?

Reliable file transfer.

- Easy "fire-and-forget" transfers
- Automatic fault recovery
- High performance
- Across multiple security domains

No IT required.

- Software as a Service (SaaS)
 - No client software installation
 - New features automatically available
- Consolidated support & troubleshooting
- Works with existing GridFTP servers
- Globus Connect solves "last mile problem"
- >3500 registered users, >3PB moved
- Recommended by NERSC, ALCF, XSEDE, Blue
 Waters, and many campuses

Enhancing and Supporting GridFTP Project Objectives

- Leverage next-generation Terabit networks and multi-core processors
 - Support big data transfer needs of exascale computers and scientific instruments
 - Not just big files, but lots of small files (LOSF), and end-to-end checksum verification
- Improve support for firewalls and NATs
- Simplify ease of use and administration
- Support DOE facilities and scientists

Proposed Work

Performance improvements

- Parallel command execution (checksums and LOSF)
- Enable multiplexed transfers
- Efficient recursive directory transfers
- New firewall friendly data channel mode(s)
 - Fix mode E connection directionality limitation
 - Single port GridFTP; no ephemeral ports
 - TCP simultaneous open, UDP NAT traversal
- Simplify installation and configuration
- Native Windows implementation
- Better UDT support

Supporting DOE

- Fixed HPSS DSI plugin for NERSC
- Added server configuration to restrict access to specific paths (ALCF)
- Added data channel security for SSH GridFTP
- Fixed special character handling in local group names (APS)

Simplified install & config

- GT 5.2 native Linux packaging (RPM, dpkg)
- Native Windows implementation (single-user)
- Globus Connect Multi-User (GCMU)
 - Simple install of GridFTP for use with Globus Online

Firewall & NAT friendliness

- Added MLSC directory listing over control channel (no data channel or ephemera ports)
- Drafting requirements for protocol changes
 - Single port GridFTP; no ephemeral ports
 - Both endpoints behinds NATs
 - Heartbeat all long commands to avoid timeouts
- Investigating potential solutions:
 - TCP-based data channel over single port
 - TCP simultaneous connect
 - UDP NAT traversal with STUN & ICE

Improved end-to-end performance

Drafting requirements for protocol changes

- Lots of small files
 - Parallel (out-of-order) execution
 - Multiplex files on data channel (help mask I/O latency)
 - Efficient recursive directory transfers
- Efficient checksums of files
 - Parallel (out-of-order) execution
 - Algorithms
- Mass storage system optimizations
 - Staging control
 - File ordering hints